Magnetic Kronig–Penney model for Dirac electrons in single-layer graphene
نویسندگان
چکیده
منابع مشابه
Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene
The properties of Dirac electrons in a magnetic superlattice (SL) on graphene consisting of very high and thin (δ-function) barriers are investigated. We obtain the energy spectrum analytically and study the transmission through a finite number of barriers. The results are contrasted with those for electrons described by the Schrödinger equation. In addition, a collimation of an incident beam o...
متن کاملCollective Excitations of Dirac Electrons in Graphene
Two-dimensional electrons in graphene are known to behave as massless fermions with Dirac-Weyl type linear dispersion near the Dirac crossing points. We have investigated the collective excitations of this system in the presence or absence of an external magnetic field. Unlike in the conventional two-dimensional electron system, the ν = 1 m fractional quantum Hall state in graphene was found to...
متن کاملSingle-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.
We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical ...
متن کاملA pseudopotential model for Dirac electrons in graphene with line defects.
We consider electron transport in a planar fermion model containing various types of line defects modeled by δ-function pseudopotentials with different matrix coefficients. After determining the necessary boundary conditions, the transmission probability for electron transport through the defect line is obtained for various types of pseudopotentials. For the schematic model considered, which ma...
متن کاملLocalization of dirac electrons in rotated graphene bilayers.
For Dirac electrons the Klein paradox implies that the confinement is difficult to achieve with an electrostatic potential although it can be of great importance for graphene-based devices. Here, ab initio and tight-binding approaches are combined and show that the wave function of Dirac electrons can be localized in rotated graphene bilayers due to the Moire pattern. This localization of wave ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2009
ISSN: 1367-2630
DOI: 10.1088/1367-2630/11/9/095009